Decremental Active Learning for Optimized Self-Adaptive Calibration in Viscose Production

نویسندگان

  • Carlos Cernuda
  • E. Lughofer
  • G. Mayr
  • T. Röder
  • P. Hintenaus
چکیده

In viscose production, it is important to monitor the concentration of several substances (H2SO4,Na2SO4 and ZnSO4) as part of the spin bath in order to assure a high quality of the final product. The acid and the two salts govern the precipitation and agglomeration of the cellulose from viscose solution and the formation of the viscose fibre. During on-line production, these process parameters usually show a quite high dynamics depending on the fibre type that is produced and on environmental influences. In such cases, conventional chemometric models, such as principal components regression, partial least squares regression, locally weighted regression and others [1][2], as well as non-linear techniques recently employed in calibration, e.g. [3][4], may show severe downtrends in performance when quantifying the concentrations of new on-line data. This is because they are established once based on pre-collected calibration spectra and kept fixed during the whole life-time of the on-line process, thus not being able to adapt to dynamically changing situations at the system. Recently, a new concept termed as eChemo (evolving chemometric models), was introduced in [5] to overcome these deficiencies of static calibration. It possesses the ability to self-adapt and re-calibrate based on newly recorded on-line spectra obtained through FT-NIR measurements, but it requires permanent supervision, i.e. real values measured by means of a titration automaton, which are time intensive and expensive from an industrial viewpoint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Injection Rate Optimization in a Water Flooding Case Study with an Adaptive Simulated Annealing Techniques

This paper introduces an effective production optimization and a water injection allocation method for oil reservoirs with water injection. In this method, a two-stage adaptive simulated annealing (ASA) is used. A coarse-grid model is made based on average horizon permeability at the beginning iterations of the optimization to search quickly. In the second stage, the fine-grid model is used to ...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

Self-directed Learning Readiness and Learning Styles among Nursing Students of Isfahan University of Medical Sciences

Introduction: Self directed learning has become a focus for nursing education in the past few decades due to the complexity and changes in nursing profession development. The relationship between self directed learning and learning styles is detectable in different learning situations. This study was performed to determine nursing students' readiness for self-directed learning and also identify...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013